Detection of antibiotic resistant enterococci and Escherichia coli in free range Iberian Lynx (Lynx pardinus)

Alexandre Gonçalves a,b,c,d, Gilberto Igreja a,b, Hajer Radhouani a,b,c,d, Tiago Santos a,b,c,d, Ricardo Monteiro a,b,c,d, Rui Pacheco a,b,c,d, Eva Alcaide e, Irene Zorrilla e, Rodrigo Serra f, Carmen Torres g, Patricia Poeta a,c,*

* Corresponding author at: Department of Veterinary Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal. Tel.: +351 259350466; fax: +351 259350629. E-mail address: ppoeta@utad.pt (P. Poeta).

© 2013 Elsevier B.V. All rights reserved.

ARTICLE INFO

Article history:
Received 10 January 2013
Received in revised form 19 March 2013
Accepted 19 March 2013
Available online xxxx

Keywords:
Antibiotic resistant enterococci
Escherichia coli
Iberian lynx (Lynx pardinus)

ABSTRACT

Thirty fecal samples from wild specimens of Iberian lynx were collected and analyzed for Enterococcus spp. (27 isolates) and Escherichia coli (18 isolates) recovery. The 45 isolates obtained were tested for antimicrobial resistance, molecular mechanisms of resistance, and presence of virulence genes. Among the enterococci, Enterococcus faecium and Enterococcus hirae were the most prevalent species (11 isolates each), followed by Enterococcus faecalis (5 isolates). High percentages of resistance to tetracycline and erythromycin (33% and 30%, respectively) were detected among enterococcal isolates. The tet(M) and/or tet(L), erm(B), aac(6′)-Ie-aph(2′)-Ia, ant(6′)-Ia, or aph(3′)-IIa genes were detected among resistant enterococci. Virulence genes were detected in one E. faecalis isolate (cpd, cylB, and cylL) and one E. hirae isolate (cylL). High percentages of resistance were detected in E. coli isolates to tetracycline (33%), streptomycin (28%), nalidixic acid (28%), and sulfamethoxazole–trimethoprim (SXT, 22%). Additionally, the blaTEM, tet(A), aadA, cmlA, and different combinations of sul genes were detected among most ampicillin, tetracycline, streptomycin, chloramphenicol and SXT-resistant isolates, respectively. Two isolates contained a class 1 integron with the gene cassette arrays dfrA1 + aadA1 and dfrA12 + aadA2. The E. coli isolates were ascribed to phylo-groups A (n = 5); B1 (n = 4); B2 (n = 6), and D (n = 3), with the virulence gene fimA present in all E. coli isolates. This study found resistance genes in wild specimens of Iberian lynx. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. Furthermore, the susceptibility of this endangered species to bacterial infection may be affected by the presence of these virulence and resistance genes.

1. Introduction

The intensive use of antimicrobial agents in human and animals has caused a selective pressure that combined with several mechanisms for bacterial genetic transfer, resulted in the selection and dissemination of resistant bacteria (Schwarz et al., 2001). Commensal bacteria can constitute a reservoir of resistance genes that might be transmitted
to other commensal or pathogenic bacteria (Gonçalves et al., 2012; Silva et al., 2010). Enterococcus spp. and Escherichia coli are common inhabitants of the gastrointestinal tracts of human and animals that can easily acquire and transfer resistance genes (Sørum and Sunde, 2001). Consequently, these commensal bacteria can be used as indicators of changes in antimicrobial resistance (Silva et al., 2010). Additionally, these bacteria are associated with both community- and hospital-acquired infections (Paterson and Bonomo, 2005; Ruiz et al., 2002).

The problem of antimicrobial resistant enterococci and E. coli is not only restricted to the clinical setting but also to other environments such as the intestinal tract of healthy humans, food-producing animals and wild animals (Aaerstrup et al., 2000; Radhouani et al., 2012; Sánz et al., 2004). Recent studies in wild animals confirm that these animals might act as reservoirs of genetic elements containing antimicrobial resistance genes that could be spread across the environment. Nevertheless, the flow of resistant microorganisms and resistant genes from the environment and humans to wildlife, or vice-versa, remains poorly comprehended (Silva et al., 2010).

The Iberian lynx (Lynx pardinus) is a critically endangered species (IUCN, 2012). Total population for this species is estimated to a maximum of 150 adults, surviving in two breeding population on southern Spain (Doñana and Sierra Morena). The Iberian lynx is a rigorous food and habitat specialist. The habitat dependence (Mediterranean scrublands) is directly correlated with its specialization on European rabbit (Oryctolagus cuniculus), composing 80–99% of their diet (Ferreras et al., 2010). The major threats to the Iberian lynx population are the decline in rabbit populations, habitat destruction, and road kills. Associated to these threats additionally, there are reports of demographic decline in rabbit populations, habitat destruction, and road kills. (Aarestrup et al., 2010). The major threats to the Iberian lynx population are the decline in rabbit populations, habitat destruction, and road kills. Associated to these threats additionally, there are reports of demographic bottlenecks and loss of genetic diversity (Ferreras et al., 2010). Lastly, their predatory and traveling habits might expose this species to food remains or fecal material from farm animals or even from humans that carry antimicrobial-resistant bacteria.

The purpose of this study was to determine the prevalence of antimicrobial resistance, the mechanisms of resistance, and the detection of virulence genes in fecal Enterococcus spp. and E. coli isolates from wild specimens of Iberian lynx. Furthermore, studying the antimicrobial resistance in intestinal enterococci and E. coli among Iberian lynx, an endangered species, is of capital importance, since the susceptibility of this endangered species to bacterial infection may be affected by the presence of virulence and resistance genes.

2. Material and methods

2.1. Fecal samples and bacterial isolates

Antimicrobial resistance was studied in enterococci and E. coli isolates recovered from 30 fresh fecal samples obtained from wild specimens of Iberian lynx (L. pardinus) between 2008 and 2010. Each fecal sample analyzed belonged to a different animal. Sample collection was obtained in Doñana National Park and in Sierra Morena, South Spain, and took place during procedures and took place during procedures or handling by conservation program personnel, e.g. placement of radio tracking systems.

For enterococci recovery, samples were seeded in Slanetz–Bartley agar (Oxoid Limited, Basingstoke, UK) plates. One colony with typical enterococcal morphology was identified by classical biochemical methods (Gram staining, catalase, oxidase, indol, Methyl-Red-Yves-Proskauer, citrate, and urease) and by the API 20E system (BioMérieux, La Balme Les Grottes, France).

2.2. Antimicrobial susceptibility testing

Antimicrobial susceptibility was performed by the disk diffusion method (CLSI, 2011). The enterococci susceptibility to 11 antimicrobial agents (vancomycin; teicoplanin; ampicillin; chloramphenicol; tetracycline; erythromycin; quinupristin–dalfopristin; ciprofloxacin; streptomycin; gentamicin; and kanamycin) was tested. High-level resistance (HLR) was evaluated for aminoglycosides. E. faecalis ATCC 29212 and Staphylococcus aureus ATCC 25923 strains were used for quality control.

Similarly, susceptibility of the E. coli isolates was performed to 16 antimicrobial agents [ampicillin, amoxicillin plus clavulanic acid, cefoxitin, cefotaxime, ceftazidime, aztreonam, imipenem, gentamicin, amikacin, tobramycin, streptomycin, nalidixic acid, ciprofloxacin, sulfamethoxazole–trimethoprim (SXT), tetracycline, and chloramphenicol] by the disk diffusion method (CLSI, 2011). E. coli ATCC 25922 was used as a quality-control strain. Additionally, ESBL–phenotypic detection was carried out by double-disk diffusion test (CLSI, 2011).

2.3. Assay of gelatinase and beta-hemolytic activities in enterococci

Gelatinase is an extracellular metalloendopeptidase that can hydrolyse gelatin, collagen, and other bioactive peptides which suggests that it may take part in inflammatory processes. Similarly, hemolysin, commonly referred to as cytolsin, has been demonstrated to contribute to the severity of enterococcal disease (Archimbaud et al., 2002).

Evaluation of gelatinase and hemolysin production was performed in enterococci as previously reported (López et al., 2009).

2.4. Characterization of antimicrobial resistance mechanisms and detection of virulence genes

The presence of the resistance genes [erm(A), erm(B), tet(M), tet(L), tet(K), aph(3′)-IIIa, ant(6)-Ia, aac(6′)-le–aph(2′)-la, catA, vanD, vanE and the Tn916– and Tn5297–specific sequences] were analyzed by PCR in resistant enterococci using previously reported primers and conditions (Table 1). The presence of genes encoding different virulence factors (gelE, agg, ace, cpd, fsc, esp, hyl and cly LLSABM) was also studied by PCR (Eaton and Gasson, 2001; Klare et al., 2005; Poeta et al., 2005).

Likewise, the presence of resistance genes [blaTEM, bladeg, tet(A), tet(B), adaA, strA–strB, aac(3)–II, aac(3)–IV, sul1, sul2, sul3, cmlA and floR] were studied by PCR in the resistant E. coli isolates (Table 1). Additionally, the int1 and int2 genes, encoding classes 1 and 2 integrases, respectively, and their variable regions were also analyzed by PCR and sequencing among our E. coli isolates (Sánz et al., 2004).

Lastly, the phylogenetic groups and virulence determinants often found in pathogenic E. coli (stx1–stx2, fimA, papG allele III, cnf1, papC and aer) were investigated (Clermont et al., 2000; Ruiz et al., 2002).

Positive and negative controls from the collection of strains of the University of Trás-os-Montes and Alto Douro (Portugal) were included in all PCR assays.

3. Results and discussion

3.1. Fecal samples and bacterial isolates

Enterococci were recovered from 27 fecal samples and E. coli in 18 of the 30 tested fecal samples. In our study, E. faecium and E. hirae were the most prevalent species (11 isolates each), followed by E. faecalis (5 isolates). These results are similar to results obtained in wild boars in Portugal (Poeta et al., 2007), but different from isolates recovered
resistant enterococcal isolates were found in this study, and quinupristin
treatment was effective in all enterococci (Silva et al., 2010).

Resistance genes detected in antimicrobial resistant enterococci and
from other wild animals where E. faecium and E. faecalis are usually
resistant enterococcal species (Poeta et al., 2005; Radhouani et al.,
2010).

3.2. Antimicrobial susceptibility, resistance mechanisms and virulence
genes in enterococci

Sixteen of the 27 enterococci isolates (59%) showed susceptibility
to all the antimicrobial agents tested (8 genes in enterococci
from other wild animals (Poeta et al., 2005, 2007; Radhouani et al., 2012; Silva et al., 2010).

Table 2 shows the antimicrobial resistance genes detected by PCR
in the enterococci and E. coli isolates. The tet(M) and tet(L) genes,
encoding a ribosomal protection mechanism and an efflux-mediated
mechanism for tetracycline resistance, respectively, are frequently
reported in enterococcal isolates (Radhouani et al., 2012; Silva et al.,
2010). In our study, most of the tetracycline-resistant isolates contained both genes. Additionally, 4 of our 7 tet(M)-positive enterococci
carried specific genes of Tn916/Tn1545 or Tn5397 transposons.
Similarly, 6 of the 7 isolates that showed resistance to erythromycin presented the erm(B) gene. The aac6′-aph(2′)-la(1 isolate), ant(6)-la (1 isolate) and aph(3′)-IIa (2 isolates) genes detected in our HLR-aminoglycoside enterococci have been previously detected in
wild animals (Poeta et al., 2005, 2007; Radhouani et al., 2012; Silva et al., 2010).

It is of interest to underline the low prevalence of virulence determinants
among our enterococci. Two isolates harbored cya genes (cylA, cylB
and cylC); however, beta-hemolytic activity was not observed among
our isolates, as they did not contain the whole cya operon. Also, none
of our isolates showed gelatinase activity. One E. faecalis isolate
harbored a sex pheromone determinant (cypd).

3.3. Antimicrobial susceptibility, resistance mechanisms and virulence
genes in E. coli isolates

Half of the E. coli isolates were susceptible to all tested antimicrobial
agents. No resistances were detected to cefoxitin, cefotaxime, ceftazi-
dime, aztreonam, imipenem, and gentamicin. High percentages of re-
sistance were observed to tetracycline (33%), streptomycin (28%),
nalidixic acid (28%), and sulfamethoxazole–trimethoprim (22%).

Table 1

<table>
<thead>
<tr>
<th>Resistance genes/Genetic elements</th>
<th>Mechanism of resistance/Mobile elements</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>erm(A), erm(B)</td>
<td>Target site modification</td>
<td>Sutcliffe et al., 1996</td>
</tr>
<tr>
<td>tet(M)</td>
<td>Ribosomal protection</td>
<td>Aarestrup et al., 2000</td>
</tr>
<tr>
<td>tet(L), tet(K)</td>
<td>Efflux</td>
<td>Aarestrup et al., 2000</td>
</tr>
<tr>
<td>aph(3′)-IIa</td>
<td>Aminoglycoside-modifying enzymes</td>
<td>Längkvist et al., 1993</td>
</tr>
<tr>
<td>aac(6′)-aph(2′)-la</td>
<td>Aminoglycoside-modifying enzyme</td>
<td>del Campo et al., 2000</td>
</tr>
<tr>
<td>catA</td>
<td>Chloramphenicol acetyltransferase</td>
<td>Aarestrup et al., 2000</td>
</tr>
<tr>
<td>vatD, vatE</td>
<td>Virginiamycin acetyltransferases</td>
<td>Robredo et al., 2000</td>
</tr>
<tr>
<td>tet(N), tet(B)</td>
<td>Target site modification</td>
<td>Madsen et al., 2000</td>
</tr>
<tr>
<td>strA, strB</td>
<td>Target site modification</td>
<td>Madsen et al., 2000</td>
</tr>
<tr>
<td>cmlA</td>
<td>Efflux</td>
<td>Sàenz et al., 2004</td>
</tr>
<tr>
<td>flq</td>
<td>Efflux</td>
<td>Ng et al., 1999</td>
</tr>
<tr>
<td>intI1, intI2</td>
<td>Integrase</td>
<td>Mazel et al., 2000</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Antimicrobial agent</th>
<th>Number of resistant isolates</th>
<th>Genes detected by PCR</th>
<th>Resistance genes and genetic elements</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus faecium (n = 11)</td>
<td>Tetracycline (30 μg)</td>
<td>3</td>
<td>tet(L)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythromycin (15 μg)</td>
<td>4</td>
<td>tet(M) + tet(L)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin (5 μg)</td>
<td>1</td>
<td>tet(M) + tet(L) + erm916</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetracycline (30 μg)</td>
<td>3</td>
<td>erm(B)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Enterococcus hirae (n = 11)</td>
<td>Tetracycline (30 μg)</td>
<td>3</td>
<td>tet(M) + tet(L)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythromycin (15 μg)</td>
<td>3</td>
<td>tet(M) + tet(L) + erm916</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin (5 μg)</td>
<td>1</td>
<td>tet(M) + tet(L) + erm916</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptomycin (300 μg)</td>
<td>2</td>
<td>erm(B)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gentamicin (120 μg)</td>
<td>1</td>
<td>bltB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kanamycin (120 μg)</td>
<td>3</td>
<td>cmlA</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Enterococcus faecalis (n = 5)</td>
<td>Tetracycline (30 μg)</td>
<td>3</td>
<td>tet(L)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Erythromycin (15 μg)</td>
<td>3</td>
<td>tet(M) + tet(L)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin (5 μg)</td>
<td>1</td>
<td>tet(M) + tet(L) + erm916</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptomycin (10 μg)</td>
<td>5</td>
<td>aph(3′)-IIa</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nalidixic acid (30 μg)</td>
<td>5</td>
<td>aph(6′)-la</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin (5 μg)</td>
<td>1</td>
<td>ant(6)-la</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulphamethoxazole–trimethoprim (25 μg)</td>
<td>4</td>
<td>aac(6′)-aph(2′)-la</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E. coli (n = 18)</td>
<td>Ampicillin (10 μg)</td>
<td>1</td>
<td>bltB</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tetracycline (30 μg)</td>
<td>6</td>
<td>tet(A)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Amikacin (30 μg)</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tobramycin (10 μg)</td>
<td>1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Streptomycin (10 μg)</td>
<td>5</td>
<td>aadA</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nalidixic acid (30 μg)</td>
<td>5</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ciprofloxacin (5 μg)</td>
<td>4</td>
<td>sul1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulphamethoxazole–trimethoprim (25 μg)</td>
<td>4</td>
<td>sul3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chloramphenicol (30 μg)</td>
<td>2</td>
<td>sul1 + sul3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefoxitin (5 μg)</td>
<td>1</td>
<td>cmlA</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Similar results were detected in other studies performed with fecal E. coli isolates from wild animals (Costa et al., 2008; Radhouani et al., 2009). Still, higher levels of resistance have been previously detected in E. coli isolates from wild birds in Portugal (Radhouani et al., 2012).

The classical TEM enzymes are the predominant plasmid-mediated β-lactamases of Gram-negative bacteria and have been previously found among ampicillin-resistant E. coli isolates from different origins (Bríñas et al., 2002). In our study the blaTEM gene was detected in the ampicillin-resistant E. coli isolate. The mechanism of tetracycline resistance through active efflux encoded by the tet(A) gene was detected in 2 tetracycline-resistant E. coli isolates and is the most frequent one reported among isolates from different origins (Radhouani et al., 2009; Sáenz et al., 2004). Moreover, the cmlA gene was identified in the 2 chloramphenicol-resistant isolates. The presence of the adaA gene was shown in 3 of 5 streptomycin-resistant E. coli isolates. Different combinations of sul1, and/or sul3 genes were identified in the sulfamethoxazole-trimethoprim-resistant E. coli isolates (Table 2).

The presence of class 1 integrons was detected in 2 isolates containing the gene cassette arrays dfrA1 + adaA1 and dfrA12 + adaA2. The presence of integrons among our commensal E. coli isolates is a cause for concern. This genetic structure might enhance the dissemination of resistance genes to other bacteria, by mobile elements such as plasmids and transposons. Similar structures have been reported in E. coli isolates from other wild animals in Portugal (Radhouani et al., 2009).

All E. coli isolates harbored at least one virulence determinant. The fimA gene was detected in 15 isolates, the papC, papCIII and fimA genes in 2 isolates, the aer, csf1 and fimA genes in 1 isolate. The predominance of fimA (type 1 fimbiae) virulence gene is in accordance with a previous work conducted with E. coli isolates from wild birds (Buteo buteo) in Portugal (Radhouani et al., 2012). Previous studies have shown that the presence of virulence genes in commensal isolates might be part of a survival mechanism that ensures greater genetic diversity, increasing their survival capability in the host animal, and not as a process of active virulence gene acquisition (Chapman et al., 2006). The distribution of the phylogenetic groups was: 5 isolates ascribed to the phylogenetic group A, 4 isolates to B1, 6 isolates to B2 and 3 isolates into the phylgroup D. A similar ratio has been previously reported among intestinal E. coli clones from wild boars in Germany (Schierack et al., 2009). Nonetheless, this phylogenetic distribution was unexpected, as former studies performed in Portugal within fecal E. coli isolates from wild animals detected a higher prevalence of strains belonging to phylogroups A and B1 (Radhouani et al., 2009, 2012).

The Iberian lynx population lives in an ecosystem where contact with humans is infrequent (dense scrubland for shelter and open pasture for hunting rabbits, with rare or none human dwellings and occasional livestock contact) and without apparent antimicrobial resistance selection pressures. Nonetheless, the extensive ranges of these animals [male ranges: 9.3 ± 1.2 km²; female ranges: 7.8 ± 2.0 km²; (Ferreras et al., 2010)] could expose this species to food remains or fecal material from farm animals or even from humans that carry resistant strains (Aarestrup et al., 2006). Additionally, there are several examples of transfer of resistant bacteria between animals, and from animals to man via the food chain (Aarestrup et al., 2008; Teale, 2002). Therefore, Iberian lynx might be contaminated through the food chain, as the presence of resistant E. coli strains has been previously detected in their predominant prey (Silva et al., 2010). The (re)introduction of captive animals carrying resistant bacteria, either due to contamination via food chain or through the selection pressure caused by the use of antimicrobial agents in management protocols, could also explain the obtained results.

4. Conclusion

This study shows wild specimens of Iberian lynx carrying antimicrobial resistance bacteria. Thus, it is important to notice that multiresistant bacteria have reached species as rare and completely non-synanthropic as the Iberian lynx. The same genes found in bacteria from environment and human origins encode the antimicrobial resistance mechanisms found in this study, indicating the possible circulation of bacteria and resistance genes between animal, environment and human ecosystems. On the other hand, the Iberian lynx is a critically endangered species; the virulence encoding genes found in these E. coli strains are genome located, thus, it is unlikely that they would be individually transmitted to other pathogenic strains (Hacker and Kaper, 2000). Nonetheless, the B2 strains are closely related with extra-intestinal virulence and the presence of virulence determinants in these strains is a cause of concern. In case of infection the virulence genes can be expressed, representing an increased health risk. Increased risk of infection and therapeutic failure due to virulence/resistance genes can consequently represent a serious setback for the species conservation program.

Acknowledgments

Alexandre Gonçalves has a PhD fellowship granted by FCT — Fundação para a Ciência e a Tecnologia and ESF — European Social Fund (SFRH/BD/47833/2008). Hajar Radhouani has a PhD fellowship granted by FCT — Fundação para a Ciência e a Tecnologia and ESF — European Social Fund (SFRH/BD/60846/2009).

References


